Study Aids:

Click the Study Aids tab at the bottom of the book to access your Study Aids (usually practice quizzes and flash cards).

Study Pass:

Study Pass is our latest digital product that lets you take notes, highlight important sections of the text using different colors, create "tags" or labels to filter your notes and highlights, and print so you can study offline. Study Pass also includes interactive study aids, such as flash cards and quizzes.

Highlighting and Taking Notes:

If you've purchased the All Access Pass or Study Pass, in the online reader, click and drag your mouse to highlight text. When you do a small button appears – simply click on it! From there, you can select a highlight color, add notes, add tags, or any combination.

Printing:

If you've purchased the All Access Pass, you can print each chapter by clicking on the Downloads tab. If you have Study Pass, click on the print icon within Study View to print out your notes and highlighted sections.

Search:

To search, use the text box at the bottom of the book. Click a search result to be taken to that chapter or section of the book (note you may need to scroll down to get to the result).

View Full Student FAQs

## 8.7 Review Exercises and Sample Exam

### Review Exercises

(Assume all variables represent nonnegative numbers.)

Simplify.

1. $36$

2. $425$

3. $−16$

4. $−9$

5. $1253$

6. $3 −83$

7. $1643$

8. $−5 −273$

9. $40$

10. $−350$

11. $9881$

12. $1121$

13. $5 1923$

14. $2 −543$

Simplify.

15. $49x2$

16. $25a2b2$

17. $75x3y2$

18. $200m4n3$

19. $18x325y2$

20. $108x349y4$

21. $216x33$

22. $−125x6y33$

23. $27a7b5c33$

24. $120x9y43$

Use the distance formula to calculate the distance between the given two points.

25. (5, −8) and (2, −10)

26. (−7, −1) and (−6, 1)

27. (−10, −1) and (0, −5)

28. (5, −1) and (−2, −2)

Simplify.

29. $83+33$

30. $1210−210$

31. $143+52−53−62$

32. $22ab−5ab+7ab−2ab$

33. $7x−(3x+2y)$

34. $(8yx−7xy)−(5xy−12yx)$

35. $45+12−20−75$

36. $24−32+54−232$

37. $23x2+45x−x27+20x$

38. $56a2b+8a2b2−224a2b−a18b2$

39. $5y4x2y−(x16y3−29x2y3)$

40. $(2b9a2c−3a16b2c)−(64a2b2c−9ba2c)$

41. $216x3−125xy3−8x3$

42. $128x33−2x⋅543+3 2x33$

43. $8x3y3−2x⋅8y3+27x3y3+x⋅y3$

44. $27a3b3−3 8ab33+a⋅64b3−b⋅a3$

Multiply.

45. $3⋅6$

46. $(35)2$

47. $2(3−6)$

48. $(2−6)2$

49. $(1−5)(1+5)$

50. $(23+5)(32−25)$

51. $2a23⋅4a3$

52. $25a2b3⋅5a2b23$

Divide.

53. $724$

54. $104864$

55. $98x4y236x2$

56. $81x6y738y33$

Rationalize the denominator.

57. $27$

58. $63$

59. $142x$

60. $1215$

61. $12x23$

62. $5a2b5ab23$

63. $13−2$

64. $2−62+6$

Rational Exponents

65. $71/2$

66. $32/3$

67. $x4/5$

68. $y−3/4$

Write as a radical and then simplify.

69. $41/2$

70. $501/2$

71. $42/3$

72. $811/3$

73. $(14)3/2$

74. $(1216)−1/3$

Perform the operations and simplify. Leave answers in exponential form.

75. $31/2⋅33/2$

76. $21/2⋅21/3$

77. $43/241/2$

78. $93/491/4$

79. $(36x4y2)1/2$

80. $(8x6y9)1/3$

81. $( a 4/3 a 1/2)2/5$

82. $(16 x 4/3 y 2)1/2$

Solve.

83. $x=5$

84. $2x−1=3$

85. $x−8+2=5$

86. $3x−5−1=11$

87. $5x−3=2x+15$

88. $8x−15=x$

89. $x+41=x−1$

90. $7−3x=x−3$

91. $2(x+1)=2(x+1)$

92. $x(x+6)=4$

93. $x(3x+10)3=2$

94. $2x2−x3+4=5$

95. $3(x+4)(x+1)3=5x+373$

96. $3x2−9x+243=(x+2)23$

97. $y1/2−3=0$

98. $y1/3+3=0$

99. $(x−5)1/2−2=0$

100. $(2x−1)1/3−5=0$

### Sample Exam

In problems 1–18, assume all variables represent nonnegative numbers.

1. Simplify.

1. $100$
2. $−100$
3. $−100$

2. Simplify.

1. $273$
2. $−273$
3. $−273$

3. $12825$

4. $1921253$

5. $512x2y3z$

6. $250x2y3z53$

Perform the operations.

7. $524−108+96−327$

8. $38x2y−(x200y−18x2y)$

9. $2ab(32a−b)$

10. $(x−2y)2$

Rationalize the denominator.

11. $102x$

12. $14xy23$

13. $1x+5$

14. $2−32+3$

Perform the operations and simplify. Leave answers in exponential form.

15. $22/3⋅21/6$

16. $104/5101/3$

17. $(121a4b2)1/2$

18. $(9 y 1/3 x 6)1/2y1/6$

Solve.

19. $x−7=0$

20. $3x+5=1$

21. $2x−1+2=x$

22. $31−10x=x−4$

23. $(2x+1)(3x+2)=3(2x+1)$

24. $x(2x−15)3=3$

25. The period, T, of a pendulum in seconds is given the formula $T=2πL32$, where L represents the length in feet. Calculate the length of a pendulum if the period is 1½ seconds. Round off to the nearest tenth.

1: 6

3: Not a real number

5: $5$

7: 1/4

9: $210$

11: $729$

13: $20 33$

15: $7x$

17: $5xy3x$

19: $3x2x5y$

21: $6x$

23: $3a2bc⋅ab23$

25: $13$

27: $229$

29: $113$

31: $93−2$

33: $4x−2y$

35: $5−33$

37: $−x3+55x$

39: $12xyy$

41: $4 x3−5 xy3$

43: $2x⋅y3$

45: $32$

47: $6−23$

49: −4

51: $2a$

53: $32$

55: $7xy26$

57: $277$

59: $72xx$

61: $4x32x$

63: $3+2$

65: $7$

67: $x45$

69: 2

71: $2 23$

73: 1/8

75: 9

77: 4

79: $6x2y$

81: $a1/3$

83: 25

85: 17

87: 6

89: 8

91: −1/2, −1

93: 2/3, −4

95: −5, 5/3

97: 9

99: 9

1:

1. 10
2. Not a real number
3. −10

3: $825$

5: $10xy3yz$

7: $146−153$

9: $6a2b−2ba$

11: $52xx$

13: $x−5x−25$

15: $25/6$

17: $11a2b$

19: 49

21: 5

23: −1/2, 1/3

25: 1.8 feet

Close Search Results
Study Aids