# Introduction to Economic Analysis, v. 1.0

by R. Preston McAfee and Tracy R. Lewis

Study Aids:

Click the Study Aids tab at the bottom of the book to access your Study Aids (usually practice quizzes and flash cards).

Study Pass:

Study Pass is our latest digital product that lets you take notes, highlight important sections of the text using different colors, create "tags" or labels to filter your notes and highlights, and print so you can study offline. Study Pass also includes interactive study aids, such as flash cards and quizzes.

Highlighting and Taking Notes:

If you've purchased the All Access Pass or Study Pass, in the online reader, click and drag your mouse to highlight text. When you do a small button appears – simply click on it! From there, you can select a highlight color, add notes, add tags, or any combination.

Printing:

If you've purchased the All Access Pass, you can print each chapter by clicking on the Downloads tab. If you have Study Pass, click on the print icon within Study View to print out your notes and highlighted sections.

Search:

To search, use the text box at the bottom of the book. Click a search result to be taken to that chapter or section of the book (note you may need to scroll down to get to the result).

View Full Student FAQs

## 18.2 Myerson-Satterthwaite Theorem

### Learning Objective

1. Can information about values and costs that is not relevant to the other party be an impediment to trade?

The lemons problem is a situation where the buyers are relatively uninformed and care about the information held by sellers. Lemons problems are limited to situations where the buyer isn’t well-informed, and these problems can be mitigated by making information public. In many transactions, the buyer knows the quality of the product, so lemons concerns aren’t a significant issue. There can still be a market failure, however, if there are a limited number of buyers and sellers.

The total gains from trade under efficiency are $∫ 0 1 ∫ 0 v v−c dc dv= ∫ 0 1 v 2 2 dv= 1 6 .$

Consider a buyer who actually has value v but reports a value r. The buyer trades with the seller if the seller has a cost less than r, which occurs with probability r.

$u(r,v)=vr− E c p(r,c)$

The buyer gets the actual value v with probability r, and makes a payment that depends on the buyer’s report and the seller’s report. But we can take expectations over the seller’s report to eliminate it (from the buyer’s perspective), and this is denoted Ecp(r, c), which is just the expected payment given the report r. For the buyer to choose to be honest, u must be maximized at r = v for every v; otherwise, some buyers would lie and some trades would not be efficiently arranged. Thus, we can concludeWe maintain an earlier notation that the subscript refers to a partial derivative, so that if we have a function f, f1 is the partial derivative of f with respect to the first argument of f. $d dv u(v,v)= u 1 (v,v)+ u 2 (v,v)= u 2 (v,v)=r | r=v =v.$

The first equality is just the total derivative of u(v,v) because there are two terms: the second equality because u is maximized over the first argument r at r = v, and the first-order condition ensures u1 = 0. Finally, u2 is just r, and we are evaluating the derivative at the point r = v. A buyer who has a value v + Δ, but who reports v, trades with probability v and makes the payment Ecp(v, c). Such a buyer gets Δv more in utility than the buyer with value v. Thus, a Δ increase in value produces an increase in utility of at least Δv, showing that $u(v+Δ,v+Δ)≥u(v,v)+Δv$ and hence that $d dv u(v,v)≥v.$ A similar argument considering a buyer with value v who reports v + Δ shows that equality occurs.

The value u(v,v) is the gain accruing to a buyer with value v who reports having value v. Because the buyer with value 0 gets zero, the total gain accruing to the average buyer can be computed by integrating by parts $∫ 0 1 u(v,v) dv=−(1−v)u(v,v) | v=0 1 + ∫ 0 1 (1−v)( du dv ) dv= ∫ 0 1 (1−v)vdv = 1 6 .$

In the integration by parts, dv = d – (1 – v) is used. The remarkable conclusion is that if the buyer is induced to truthfully reveal the buyer’s value, the buyer must obtain the entire gains from trade. This is actually a quite general proposition. If you offer the entire gains from trade to a party, that party is induced to maximize the gains from trade. Otherwise, he or she will want to distort away from maximizing the entire gains from trade, which will result in a failure of efficiency.

The logic with respect to the seller is analogous: the only way to get the seller to report her cost honestly is to offer her the entire gains from trade.

The Myerson-Satterthwaite theoremA theorem that shows private information about value may prevent efficient trade. shows that private information about value may prevent efficient trade. Thus, the gains from trade are insufficient to induce honesty by both parties. (Indeed, they are half the necessary amount.) Thus, any mechanism for arranging trades between the buyer and the seller must suffer some inefficiency. Generally this occurs because buyers act like they value the good less than they do, and sellers act like their costs are higher than they truly are.

It turns out that the worst-case scenario is a single buyer and a single seller. As markets get “thick,” the per capita losses converge to zero, and markets become efficient. Thus, informational problems of this kind are a small-numbers issue. However, many markets do in fact have small numbers of buyers or sellers. In such markets, it seems likely that informational problems will be an impediment to efficient trade.

### Key Takeaways

• The Myerson-Satterthwaite theorem shows that the gains from trade are insufficient to induce honesty about values and costs by a buyer and seller. Any mechanism for arranging trades between the buyer and the seller must suffer some inefficiency.
• Generally this inefficiency occurs because buyers act like they value the good less than they do, and sellers act like their costs are higher than they truly are, resulting in an inefficiently low level of trade.
• As markets get “thick,” the per capita losses converge to zero, and markets become efficient. Informational problems of this kind are a small-numbers issue.

### Exercise

1. Let h(r, c) be the gains of a seller who has cost c and reports r, h(r, c) = p(v, r) – (1 – r)c.

Noting that the highest cost seller (c = 1) never sells and thus obtains zero profits, show that honesty by the seller implies the expected value of h is 1/16.

Close Search Results
Study Aids