Please wait while we create your MIYO...

# Introductory Chemistry, v. 1.0

by David W. Ball

Study Aids:

Click the Study Aids tab at the bottom of the book to access your Study Aids (usually practice quizzes and flash cards).

Study Pass:

Study Pass is our latest digital product that lets you take notes, highlight important sections of the text using different colors, create "tags" or labels to filter your notes and highlights, and print so you can study offline. Study Pass also includes interactive study aids, such as flash cards and quizzes.

Highlighting and Taking Notes:

If you've purchased the All Access Pass or Study Pass, in the online reader, click and drag your mouse to highlight text. When you do a small button appears – simply click on it! From there, you can select a highlight color, add notes, add tags, or any combination.

Printing:

If you've purchased the All Access Pass, you can print each chapter by clicking on the Downloads tab. If you have Study Pass, click on the print icon within Study View to print out your notes and highlighted sections.

Search:

To search, use the text box at the bottom of the book. Click a search result to be taken to that chapter or section of the book (note you may need to scroll down to get to the result).

View Full Student FAQs

## 7.7 End-of-Chapter Material

1. What is the work when 124 mL of gas contract to 72.0 mL under an external pressure of 822 torr?

2. What is the work when 2,345 mL of gas contract to 887 mL under an external pressure of 348 torr?

3. A 3.77 L volume of gas is exposed to an external pressure of 1.67 atm. As the gas contracts, 156 J of work are added to the gas. What is the final volume of the gas?

4. A 457 mL volume of gas contracts when 773 torr of external pressure act on it. If 27.4 J of work are added to the gas, what is its final volume?

5. What is the heat when 1,744 g of Hg increase in temperature by 334°C? Express your final answer in kJ.

6. What is the heat when 13.66 kg of Fe cool by 622°C? Express your final answer in kJ.

7. What is final temperature when a 45.6 g sample of Al at 87.3°C gains 188 J of heat?

8. What is final temperature when 967 g of Au at 557°C lose 559 J of heat?

9. Plants take CO2 and H2O and make glucose (C6H12O6) and O2. Write a balanced thermochemical equation for this process. Use data in Table 7.2 "Enthalpies of Formation for Various Substances".

10. Exercise 9 described the formation of glucose in plants, which take in CO2 and H2O and give off O2. Is this process exothermic or endothermic? If exothermic, where does the energy go? If endothermic, where does the energy come from?

11. The basic reaction in the refining of aluminum is to take Al2O3(s) and turn it into Al(s) and O2(g). Write the balanced thermochemical equation for this process. Use data in Table 7.2 "Enthalpies of Formation for Various Substances".

12. Is the enthalpy change of the reaction

H2O(ℓ) → H2O(g)

zero or nonzero? Use data in Table 7.2 "Enthalpies of Formation for Various Substances" to determine the answer.

13. What mass of H2O can be heated from 22°C to 80°C in the combustion of 1 mol of CH4? You will need the balanced thermochemical equation for the combustion of CH4. Use data in Table 7.2 "Enthalpies of Formation for Various Substances".

14. What mass of H2O can be heated from 22°C to 80°C in the combustion of 1 mol of C2H6? You will need the balanced thermochemical equation for the combustion of C2H6. Use data in Table 7.2 "Enthalpies of Formation for Various Substances". Compare your answer to Exercise 13.

15. What is the enthalpy change for the unknown reaction?

Pb(s) + Cl2(g) → PbCl2(s) ΔH = −359 kJ PbCl2(s) + Cl2(g) → PbCl4(ℓ) ΔH = ? Pb(s) + 2Cl2(g) → PbCl4(ℓ) ΔH = −329 kJ
16. What is the enthalpy change for the unknown reaction?

P(s) + 3/2Br2(ℓ) → PBr3(ℓ) ΔH = −185 kJ PI3(s) → P(s) + 3/2I2(s) ΔH = ? PI3(s) + 3/2Br2(ℓ) → PBr3(ℓ) + 3/2I2(s) ΔH = −139 kJ
17. What is the ΔH for this reaction? The label gra means graphite, and the label dia means diamond. What does your answer mean?

C(s, gra) → C(s, dia)
18. Without consulting any tables, determine the ΔH for this reaction. Explain your answer.

H2O(ℓ, 25°C) → H2O(ℓ, 25°C)

1. 5.70 J

2. 4.69 L

3. 80.97 kJ

4. 91.9°C

5. 6CO2(g) + 6H2O(ℓ) → C6H12O6(s) + 6O2(g) ΔH = 2,799 kJ

6. 2Al2O3(s) → 4Al(s) + 3O2(g) ΔH = 3351.4 kJ

7. 3,668 g

8. ΔH = 30 kJ

9. ΔH = 1.897 kJ; the reaction is endothermic.

Close Search Results
Study Aids